Frage:
Warum stören Chorstimmen nicht destruktiv, so dass wir sie nicht hören können?
chasly - reinstate Monica
2015-10-25 15:03:51 UTC
view on stackexchange narkive permalink

Schall wird von Wellen verbreitet. Wellen können stören.

Angenommen, zwei Tenöre stehen nebeneinander und singen jeweils ein kontinuierliches mittleres C.

  1. Wird es so sein, dass einige Leute im Publikum können sie wegen Störungen nicht hören?

  2. Würde es einen Unterschied machen, wenn sie zwei Sopranistinnen oder zwei Bässe wären und eine Reihe von Oktaven höher oder niedriger singen würden? > Wie verallgemeinert sich dies auf eine Reihe von n Sängern?

  3. Inwieweit sind ihre Stimmen bei einem ganzen Chor weniger als nur additiv? Ist es möglich, dass der Chor für ein unglückliches Publikum völlig still zu sein scheint - wenn auch nur für einen Moment?

  4. ol>
Kommentare sind nicht für eine ausführliche Diskussion gedacht.Dieses Gespräch wurde [in den Chat verschoben] (http://chat.stackexchange.com/rooms/30725/discussion-on-question-by-chasly-from-uk-why-dont-choir-voices-destructively-in).
Sechs antworten:
Floris
2015-10-25 18:12:58 UTC
view on stackexchange narkive permalink

Das Hauptproblem bei der Einstellung eines Orchesters oder Chores ist die Tatsache, dass keine zwei Stimmen oder Instrumente über einen längeren Zeitraum genau die gleiche Tonhöhe beibehalten. Wenn Sie zwei reine Sinuswellenquellen haben, die sich nur um einen Hertz unterscheiden, verschiebt sich das Interferenzmuster zwischen ihnen im Laufe der Zeit - tatsächlich hören Sie zu jedem Zeitpunkt einen Zyklus konstruktiver und destruktiver Interferenzen, die wir als Beats erkennen, aber die Die genaue Zeit, zu der jedes Publikum die größte oder geringste Intensität hört, hängt von seiner Position ab.

Als nächstes betrachten wir die Winkelverteilung des Signals. Wenn zwei Tenöre einen D3 von 147 Hz (nahe dem unteren Rand ihres Bereichs) singen, beträgt die Wellenlänge des Klangs 2 m. Wenn sie näher beieinander als 1 m stehen, besteht nirgendwo die Möglichkeit, eine Phasenverschiebung von 180 Grad zu erzeugen. Wenn sie nahe der Spitze ihres Bereichs singen, liegt die Tonhöhe näher bei 600 Hz und die Wellenlänge bei 0,5 m. Unabhängig davon, welches Interferenzmuster sie erzeugen, würde eine winzige Frequenzverschiebung ausreichen, um das Muster zu bewegen - so dass kein stationärer Beobachter eine "stille" Interferenz erfahren würde - selbst bei der Grundfrequenz.

Geben Sie Vibrato ein: Die meisten Sänger und Instrumente modulieren ihre Frequenz absichtlich leicht - dies macht die Note ansprechender und ermöglicht es ihnen, Mikrokorrekturen an der Tonhöhe vorzunehmen. Außerdem hebt sich die Stimme vor dem Hintergrund von Instrumenten besser ab und ermöglicht eine bessere Projektion (lauter für weniger Aufwand seitens des Sängers). Dies wird von Solisten verwendet, aber seltener von guten Chören - weil Sie im Chor Stimmen mischen möchten, ohne sie hervorzuheben.

Auf jeden Fall lautet das allgemeine Konzept hier Inkohärenz : Die verschiedenen Klangquellen in einem Chor oder Orchester sind inkohärent, was bedeutet, dass sie über die Zeit keine feste Phasenbeziehung aufrechterhalten. Dies bedeutet, dass sie kein stationäres Interferenzmuster erzeugen.

Ein Nebeneffekt von Interferenzen tritt in der Lautstärke eines Chores auf: Wenn Sie die Amplituden von zwei Schallquellen addieren, die perfekt in Phase sind, verdoppelt sich Ihre Amplitude und die Energie / Intensität vervierfacht sich. Ein 32-Mann-Chor wäre über 1000-mal lauter als eine Solostimme - und dies würde teilweise dadurch erreicht, dass die Stimmen nur "direkt vor" dem Chor zu hören waren (perfekt zusammenhängende Stimmen würden sich wie ein phasengesteuertes Array verhalten ). Da die Stimme jedoch inkohärent ist, gibt es keine Fokussierung, keine Verstärkung und sie ist überall zu hören.

Beachten Sie, dass Inkohärenz eine Funktion von Phase und Frequenz ist - jede Note ist eine Mischung von Frequenzen, und obwohl Eine stetige Note enthält im Prinzip nur eine Grundtöne und ihre Harmonischen, deren genaue Beziehung sehr kompliziert ist. Selbst wenn Sie die Stimme eines einzelnen Sängers in zwei Lautsprecher mit einer Verzögerungsleitung einspeisen würden, die einen der Lautsprecher speist, würden Sie meiner Meinung nach aufgrund der Tonhöhenschwankungen auch nach kurzer Zeit keine Interferenzen finden. Stattdessen würde Ihr Ohr dies als zwei Personen wahrnehmen, die singen.

Und schließlich - da eine Stimme (oder ein Instrument) eine so komplexe Mischung von Frequenzen ist, gibt es im Allgemeinen keine geometrische Anordnung von Quellen und Empfänger welche alle Frequenzen gleichzeitig destruktiv stören würden. Und das Ohr ist ein so komplexes Instrument, dass es tatsächlich fehlende Komponenten in einer wahrgenommenen Note "synthetisiert" - was zu dem seltsamen Phänomen führt, bei dem für bestimmte Instrumente die wahrgenommene Tonhöhe einer Frequenz entspricht, die nicht vorhanden ist - wie die Fall mit einer Glocke zum Beispiel.

Wenn Sie nicht sehr hoch singen, ist ein Hertz merklich verstimmt.Siehe meine Antwort.
Warum nicht das ganze Schwein gehen und die Korrelationslänge / -zeit erwähnen?: D.
Diese Antwort ist zwar korrekt, übersieht jedoch einige der wichtigeren Effekte und hebt irrelevante Punkte hervor.
"... wenn sie näher als 1 m beieinander stehen, gibt es nirgendwo zerstörerische Störungen."Dies ist falsch, da davon ausgegangen wird, dass die Menschen in Phase singen, was im Allgemeinen nicht der Fall ist.
@DietrichEpp fair point - bearbeitet
+1 für den Phased-Array-Kommentar (obwohl die gesamte Antwort gut ist).
Ich habe viele Aufnahmen gemacht, bei denen ich versucht habe, mehrere Stimmen in einem Song nur mit meiner Stimme aufzunehmen - und das Interessante ist, dass Sie sehr vorsichtig sein müssen, denn wenn Sie am Ende dieselben Noten (und bestimmte Harmonische) singenIn den verschiedenen Tracks werden sie * perfekt * zusammenpassen (und ich bin weit entfernt von einem perfekten Sänger - Chorsänger könnten darin sogar noch besser sein).Ich vermute, dass dies eher mit der Funktionsweise des Ohrs als mit der Physik des Klangs zu tun hat - es ist wahrscheinlich Teil der Mechanismen, die Sie daran hindern, überall Echos zu hören.Sie dürfen menschliche Wahrnehmungsprobleme nicht ignorieren.
@Luaan das ist interessant!Wenn Sie "perfekt zusammenpassen" sagen, meinen Sie "es klingt wie nur eine Person, die singt", oder?Das ist in der Tat eine menschliche Wahrnehmungssache und hat meiner Meinung nach, obwohl es interessant ist, wenig mit der Frage der Physik des Klangs zu tun.
Ja, genau - das Spielen des Single-Tracks und des Mix-Tracks macht es fast unmöglich herauszufinden, welcher welcher ist.Ein Teil des Effekts ist auch ein Artefakt des Mischens - zum Beispiel bleibt die wahrgenommene Lautstärke nahezu gleich, da die Spuren eher als Durchschnittswerte als als Addition gemischt werden.Es könnte einen größeren Unterschied geben, wenn Sie versuchen, den nächsten Titel auf dem Hintergrund des ursprünglichen Titels aufzunehmen. Dies würde jedoch teure Geräte (einschließlich einer Klangkammer) erfordern.
Sie stören möglicherweise nicht die Zeitdauer destruktiv, aber wenn sie leicht unterschiedliche Frequenzen singen, hören die Leute Schlagfrequenzen.Warum hören die Leute keine Schwebungsfrequenzen?
Fabrice NEYRET
2015-10-25 15:59:21 UTC
view on stackexchange narkive permalink

Wellenstörungen sind wahrnehmbar, wenn Sie sehr nahe und reine Frequenzen haben. Bei Gitarre oder Flöte können Sie Beats hören, wenn 2 Saiten oder 2 Instrumente eine so nahe und reine Frequenz spielen. Aber für ein reiches Timbre wie die menschliche Stimme, vergiss es! Es handelt sich um "Milliarden" (in der Tat eine Kontinuität) verschiedener nicht synchronisierter Frequenzen (selbst in dem, was Sie als "C-Ton" bezeichnen würden), sodass Sie nicht alle gleichzeitig in einem riesigen Multi-Synchrone-Beat abbrechen.

Was wahrscheinlicher ist (für gewöhnliche, reiche Klangfarben), ist die Störung Ihrer eigenen Stimme, die sich auf zwei verschiedenen Wegen bewegt, normalerweise wenn Sie zwischen zwei engen Betonwänden singen. Denn hier gibt es Synchronität (es sind 2 Kopien desselben Signals; die Ausrichtung der Aufhebung wird durch den Abstand und die Wellenlänge bestimmt). Sie werden nicht alle abbrechen, aber Sie werden einige Töne verblassen oder verstärken, und Hörer an verschiedenen Orten hören möglicherweise unterschiedliche Modulationen.

Beachten Sie auch, dass Emitter keine Punkte sind und nicht in der Luft schweben verwischt die Pfade und damit die Interferenzbedingungen (also die Menge und den Ort davon).

Jetzt ist alles für gewöhnliche Sänger oder Instrumente mit reichem Timbre. Bei einer Opernstimme mit langen Noten sind Sie wahrscheinlich näher an der Flötensituation (wenn die Leute den gleichen reinen Ton spielen). Außerdem kümmern sich Opernräume um Schallreflektoren (nah oder fern), Sänger sind weit von Ihnen entfernt usw., sodass die Schallwege viel weniger verschwommen sind.

Ein Duo oder Orchester elektronischer Instrumente, die alle Sinuswellen spielten, würde unter dem Problem leiden?Würden die Tenöre nicht die Grundfrequenz der Note verlieren und nur die Obertöne belassen?Das würde sie für manche Menschen schäbig und für andere boomend klingen lassen.
Ein Gedanke an Selbstinterferenz (vielleicht ist das kein guter Satz !!!), aber selbst mit der eigenen Stimme wäre das Interferenzmuster für jede Frequenz unterschiedlich (?).Wieder ist es die Grundfrequenz, die mich am meisten beschäftigt.
Beachten Sie, dass Sie bei allen vorhandenen Obertönen ohne Grundton immer noch den gleichen Ton hören!(so können einige Organe mit diesem "fehlenden fundamentalen" Effekt sehr tiefe Noten erzeugen). Beachten Sie, dass es auch den traditionellen Effekt von "dem zusätzlichen Sänger" gibt, wenn die Kombination von Stimmen Ihnen die Illusion gibt, dass es noch eine Stimme gibt.
NB: Ich habe in meiner Antwort verschiedene Änderungen vorgenommen.
@chaslyfromUK ist eine Technik, die von Synthesizern verwendet wird, um bestimmte Klänge zu erzeugen, wenn perfekte Sinuswellen zwischen dem linken und dem rechten Kanal etwas phasenverschoben gespielt werden.
Es gibt einige Gesangsgruppen, die dafür bekannt sind, eine nahezu perfekte Übereinstimmung der Tonhöhe zu erzielen, aber was anscheinend passiert (angesichts des unvermeidlichen Unterschieds in den Klangfarben), ist, dass die beiden übereinstimmenden Stimmen eine scheinbar dritte Stimme synthetisieren.
@chaslyfromUK Dies ist tatsächlich ein erhebliches Problem beim Komponieren elektronischer Musik aus reinen Wellen (na ja, einfach könnte ein besseres Wort sein).Es ist sehr einfach, Musik zu erstellen, die auf diese Weise unglaublich nervig ist - die Lautstärke steigt und fällt, wenn mehrere "Instrumente" destruktiv und konstruktiv interferieren usw. Es ist jedoch weniger wahrscheinlich, dass sie versehentlich auf der Bühne auftreten - Sie erhalten Unmengen von Reflexionen und Beugungendie Umgebung, die die "Reinheit" des Mischens stört.
@Luaan, Haben Sie Links zu tatsächlichen Auftritten, etwa auf Youtube?
@chaslyfromUK Nun, es ist fast immer ein unerwünschtes Merkmal, daher würde ich nicht erwarten, dass es wirklich veröffentlicht wird.Sie könnten Genres wie Dubstep ausprobieren - ich habe einige gehört, die dies absichtlich ausgenutzt haben (es ist immer noch sehr nervig, aber na ja).
anon01
2015-10-26 01:52:25 UTC
view on stackexchange narkive permalink

Eine vollständige zerstörerische Störung erfordert unwahrscheinliche Umstände. Ausgehend von einer Lehrbuchsituation, in der Sie Interferenzen beobachten könnten (zwei Schallquellen gleicher Frequenz und Amplitude), habe ich die wahrscheinlichsten Arten aufgelistet, wie diese Bedingungen verletzt werden, wenn Sie zu realistischeren Bedingungen wechseln.

Stellen Sie sich zwei Stimmgabeln vor, die genau zur gleichen Zeit mit demselben Impuls in einem schaumbedeckten Raum angeschlagen werden, um reflektierte Schallwellen zu verhindern. In diesem Fall wird die (zeitlich gemittelte) Schallintensität durch das klassische Zwei-Quellen-Interferenzmuster angegeben (dies kann beobachtet werden!). Das Bild zeigt ein solches Muster für verschiedene Frequenzen und Entfernungen - mehr dazu weiter unten.

Komplikation 1: Lautstärke (Amplitude) ) Modulation

Dies ist wahrscheinlich der größte Effekt: Wenn unser Hammer versehentlich eine der Stimmgabeln stärker als die andere schlägt, erfolgt nirgendwo eine vollständige Aufhebung, und das Interferenzmuster ist lauter / weichere Bereiche von etwas Hintergrundvolumen. Dies ist besonders wichtig, da wir die Lautstärke logarithmisch wahrnehmen. Daher muss die Schallunterdrückung wirklich gut sein, damit wir sie bemerken.

Komplikation 2: Frequenzinhalt starke>

Stimmgabeln sind ziemlich monochromatisch ausgelegt - dies ist teilweise auf ihre lange Zinkengeometrie zurückzuführen. Die meisten Klänge haben Harmonische (Vielfache dieser Frequenz) und oft auch andere Frequenzen.

Wir könnten beispielsweise die Stimmgabeln durch Glocken ersetzen, die deutlich mehr Frequenz enthalten. Diese zusätzlichen Frequenzen haben sehr unterschiedliche Beugungsmuster, und wenn Sie sie alle zusammenkleben, neigen sie dazu, das Beugungsmuster zu "glätten". Sie können dies sehen, indem Sie feststellen, wie unterschiedlich die Muster für verschiedene Frequenzen im Bild sind, obwohl dies etwas komplizierter ist *.

Das wirkliche Leben wird wirklich kompliziert

Stellen Sie nun zwölf Sänger in einen Konzertsaal. Zusätzlich zu allem, was oben erwähnt wurde, erhalten Sie jetzt Schallreflexionen von überall her. Nahezu die gesamte Struktur unseres ursprünglichen Beugungsmusters wurde herausgemittelt. FWIW, die menschliche Stimme ist durch diese Maßnahmen auch als Instrument ziemlich widerspenstig: Sie hat eine größere Tonhöhen- und Lautstärkevariation als die meisten Instrumente und eine ziemlich komplizierte Frequenzzusammensetzung.

(Einschränkung) * Zusätzliche Frequenzen werden erzeugt Das Gesamtmuster ist komplexer, aber Sie können Interferenzmuster nicht einfach "addieren", um eine Gesamtsumme zu erhalten. Feldamplituden können hinzugefügt werden, Intensität / Volumen (was aufgezeichnet ist) jedoch nicht.

Das vielleicht Außergewöhnlichste ist, dass ein erfahrener Chor- / Orchesterleiter hören kann, ob jemand etwas abseits oder mit einem unangenehmen Ton singt / spielt und diese Person genau bestimmt.Es ist mir (und ich bin Musiker) ein echtes Rätsel, wie das menschliche Gehirn den gesamten Mischmasch, der gerade stattfindet, trennen und wieder in einzelne Melodielinien umwandeln kann.Wir können es auch in Stereo machen.
Ja das ist interessantEigentlich hat das genauso viel damit zu tun, dass wir zwei Ohren haben.Jedes Ohr hört ein etwas anderes Signal, und das hilft wirklich beim Auffinden einer Quelle.Sie können dies versuchen: Stecken Sie bei einer Cocktailparty eines Ihrer Ohren ein, und es ist plötzlich viel schwieriger, genau zu wissen, wo sich Menschen befinden.
@chasly Ich denke, das liegt daran, dass das menschliche Gehirn eingehende Signale mit einem Algorithmus verarbeitet, der der Autokorrelation ähnelt, und nicht nur auf bestimmte Frequenzen wartet.Selbst mit einem Mikrofon gibt es Computeralgorithmen, die erkennen können, dass jemand falsch singt.Mit nur einem Ohr können Sie jedoch nicht herausfinden, wer es ist.
Es könnte sich lohnen, die * Skala * der Muster für die für die Stimme typischen Schallfrequenzen hinzuzufügen.440z ist ungefähr 75 cm groß, wodurch die Skalierung eines Musters für die reine Tonunterdrückung definiert wird.Dies bedeutet, dass es unwahrscheinlich ist, dass sich beide Ohren selbst bei reinen Tönen in einer Zone befinden, in der der Ton vollständig abbricht.
Tatsächlich ist eine Stimmgabel ein schlechtes Beispiel für einen Klangerzeuger.Es vibriert symmetrisch (daher wird die Vibrationsenergie nicht auf den Halter übertragen und geht nicht schnell verloren.) Wenn man die Stimmgabel entlang ihrer Längsachse betrachtet, wird der Schall in einer Phase bei 0 und 180 Grad, in der entgegengesetzten Phase bei 90 und 90 ° emittiert270 Grad und ist an vier Zwischenpunkten Null.Wenn Sie eine Stimmgabel mit ihrer langen Achse senkrecht zur Richtung Ihres Ohrs halten und sie um ihre lange Achse drehen (indem Sie ihren Stiel zwischen Ihren Fingern rollen), werden Sie dies deutlich hören.
Sie machen einige großartige Punkte.
Level River St
2015-10-26 01:21:22 UTC
view on stackexchange narkive permalink

Zuerst werde ich etwas näher auf das eingehen, was Fabrice gesagt hat.

Betrachten Sie zwei Sänger, die ein A bei 220 Hz singen (um die Mathematik zu vereinfachen). Kein Sänger oder Instrument der realen Welt erzeugt eine reine Sinuswelle. Es gibt also Harmonische bei 440, 660, 880, 1100 Hz usw. Die Harmonischen haben auch für verschiedene Beispiele eines bestimmten Instrumententyps / Sängers tendenziell die gleiche Art von Phasenbeziehung.

Also Wenn unsere beiden Sänger oder Instrumente die 220 Hz genau phasenverschoben haben, sind die 440 Hz perfekt in Phase! Wenn niedrige Frequenzen fehlen, füllt Ihr Gehirn diese häufig aus https://en.wikipedia.org/wiki/Missing_fundamental

In Bezug auf die Idee, dass Sänger möglicherweise nicht singen gleiche Frequenz: Das menschliche Ohr kann sehr gut Frequenzen unterscheiden. Der Unterschied zwischen einer Note und der nächsten auf einer Skala (ein Halbton) ist ein Verhältnis von 2 ^ (1/12) oder ungefähr 1,059: 1. Der Halbton ist in 100 Cent unterteilt, und 10 Cent gelten als ernsthaft verstimmt. Für eine 100-Hz-Note, die ungefähr 0,6 Hz beträgt, werden Sie für eine kurze Note keine Sänger hören, die in und aus der Phase miteinander gehen. Für eine längere Note werden Sie es wahrscheinlich tun.

Wenn Sie hören möchten, wie zwei Sinuswellenquellen klingen, benötigen Sie einen Tiefpassfilter. Die Schalldämpfer großer Dieselmotoren sind sehr effektive Tiefpassfilter (dies ist nicht beabsichtigt, es ist nur einfacher, hohe Frequenzen als niedrige Frequenzen stumm zu schalten.) Wenn Sie zwei zusammen laufende Zugmotoren hören, hören Sie das Ein- und Ausblenden des Geräusches (I ' Ich habe dieses Geräusch mehr in den USA gehört, wo Züge üblicherweise von mehreren Motoren gezogen werden als in Großbritannien.)

Außerdem werden niedrige Frequenzen durch die Entfernung weniger gedämpft als hohe Frequenzen. Sie können das gleiche Geräusch von einem zweimotorigen Flugzeug (vorzugsweise Propeller) hören, wenn es hoch über Ihnen fliegt. Wieder wird der Ton ein- und ausgeblendet, wenn die Motoren ein- und ausgefahren werden. Beachten Sie, dass die Motoren so eng wie möglich synchronisiert sind, da schnelle Schläge zwischen den Motorfrequenzen die Passagiere stören: https://aviation.stackexchange.com/questions/14263/what-is-propeller-engine-sync -und-wie-funktioniert-es

Ein weiterer Punkt: Für zwei Sinuswellenquellen in einem geschlossenen Raum, auch wenn das direkte Signal von den Quellen vollkommen phasenverschoben ist, ist das Schall, der von den Wänden reflektiert wird, hat wahrscheinlich eine andere Phasenbeziehung. Damit Sie den Ton hören können, klingt er nur so, als ob er von einem anderen Ort kommt.

super antwort ...!
Downvoter erklären Sie bitte das Problem.
2 Gegenstimmen!Das ist ein Rekord für mich!Noch keine Erklärung!Wie soll ich das Problem beheben?Ich kann nur annehmen, dass es daran liegt, dass Sie denken, dass der Teil über Motoren irrelevant ist.Das bleibt aber.Es ist wichtig zu beachten, dass das Phänomen der destruktiven Interferenz * hörbar * beobachtet werden kann, jedoch nicht im Kontext eines Chores.
Dave
2015-10-27 22:07:13 UTC
view on stackexchange narkive permalink

Das Wichtigste ist, dass die Phasen der verschiedenen Signale (einschließlich der Raumreflexionen) praktisch zufällig sind. Zusätzlich zur exakten Frequenzanpassung erfordert eine vollständige destruktive Interferenz, dass die beiden Signale um 180 ° phasenverschoben sind. Da die Phasen der verschiedenen Signale nicht miteinander korreliert sind, wächst die erwartete Leistung an der Position des Hörers mit der Anzahl der Quellen.

Betrachten Sie die Signale im Fourier-Bereich, die Phase des Signals bei a bestimmte Frequenz wird effektiv zufällig sein. Wenn Sie mehr davon addieren, wird die Amplitude bei einer bestimmten Frequenz in der komplexen Ebene zufällig durchlaufen. Somit tendiert die Intensität (Amplitude im Quadrat) bei einer bestimmten Frequenz zur Summe der Intensitäten der einzelnen Komponenten.

Wenn wir ein Ensemble von Quellen haben, wird eine komplexe Amplitude bei einer bestimmten Frequenz $ a_j erzeugt (\ omega) e ^ {i \ phi_j (\ omega)} $ Hinweis: Ich fordere nicht, dass die Quellen reine Töne sind, sondern nur, dass wir nur eine Frequenz berücksichtigen ($ \ omega $ mit der zugehörigen Wellenzahl $ k $) zu einem Zeitpunkt, daher werde ich die explizite $ \ omega $ -Abhängigkeit fallen lassen. Der entscheidende Punkt ist, dass das $ \ phi_i $ gleichmäßig auf $ [0,2 \ pi) $ verteilt und von Quelle zu Quelle unabhängig ist.

Die komplexe Amplitude an einem Ohr in einem nicht geschlossenen Raum wird sein :

$ A = \ sum_j a_j e ^ {i (k d_j + \ phi_j)} $

wobei die Phase sowohl die intrinsische Phase der Quelle als auch die akkumulierte Phase enthält über den Pfad von der Quelle zum Listener.

Ihre Intuition scheint darin bestätigt zu sein, dass wir, wenn wir über die zufälligen Phasen mitteln, $ \ langle A \ rangle = 0 $ erhalten (ich verwende spitze Klammern für die Mittelung über die zufälligen Phasen. Aber dies täuscht, weil es aufgrund der Phasensymmetrie Null ist, dh die Phase von $ A $ ist gleichmäßig verteilt. Interessanter ist es, $ \ langle \ lvert A \ rvert ^ 2 \ rangle = \ sum_j a_j ^ 2 $ (the Cross-Terms-Durchschnitt bis Null) - das heißt, die erwartete Leistung des Netzsignals wächst mit der Anzahl der Quellen. Ein ähnliches Ergebnis würde man erhalten, wenn man die erwartete Amplitude $ \ langle \ lvert A \ rvert \ rangle $ aber untersucht Die Mathematik ist etwas schwieriger.

Abgesehen von speziellen Anordnungen der Quellen an den Wänden des Raums weisen die Reflexionen an der Wand aufgrund der unterschiedlichen Weglängen von der Quellwand effektiv zufällige Phasen auf -ear (oder source-wall-wall-ear und so weiter) würden diese in der Gleichung als

$$ A = \ sum_j a_j e ^ {i (k d_j + \ phi_j)} + erscheinen \ sum_p \ s um_i a_j r_ {pi} e ^ {i (k d_ {pj} + \ phi_j)} $$ wobei die zusätzliche Summe über den durch $ p $ indizierten Pfaden mit den zugehörigen Reflektivitätskoeffizienten $ r_ {pj} $ und Pfad liegt Längen $ d_ {pj} $. Beachten Sie, dass für typische Höhen Klänge Wellenlängen in der Größenordnung von einem Meter (oder so) haben und Räume (insbesondere Konzertsäle) auf 10 Meter skaliert sind, sodass unterschiedliche Pfade keine ähnlichen Phasen wie der direkte Pfad haben. P. >

Haftungsausschluss Ich kann die Möglichkeit, dass es bei besonders starken Sängern zu einer Phasenverriegelung zwischen den Sängern kommt, nicht absolut positiv ausschließen (siehe dieses Video für ein mechanisches Beispiel)) und daher könnte die Annahme eines unabhängigen $ \ phi_j $ ungültig sein. Trotzdem sind für die meisten musikalischen Situationen die Phasen mit Pfadlänge groß genug, um die Phasen am Ort des Hörers effektiv zufällig zu ordnen.

Spektakulär!(Das Metronom-Beispiel ist faszinierend.)
SkipBerne
2015-10-27 23:03:45 UTC
view on stackexchange narkive permalink

Sie greifen konstruktiv ein. Unser Ohr / Gehirn sortiert es aus. Wir hören keine Schallwellen. Wir spüren Spektren.

Denken Sie darüber nach, jeder Audiologe wird mir zustimmen.


Diese Fragen und Antworten wurden automatisch aus der englischen Sprache übersetzt.Der ursprüngliche Inhalt ist auf stackexchange verfügbar. Wir danken ihm für die cc by-sa 3.0-Lizenz, unter der er vertrieben wird.
Loading...