Obwohl ich spät in der Party bin, poste ich eine Antwort auf elementarer Ebene. Vielleicht beweist dies die Kraft der Tensorrechnung, die in allen vorherigen netten Antworten verwendet wurde.
Abstract
In dieser Antwort werden wir versuchen, Maxwell-Gleichungen im leeren Raum abzuleiten
\ begin {align}
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {E} & = - \ frac {\ teilweise \ mathbf {B}} {\ teilweise t}
\ tag {001a} \\
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {B} & = \ mu_ {0} \ mathbf {j} + \ frac {1} {c ^ {2}} \ frac {\ teilweise \ mathbf { E}} {\ partielle t}
\ tag {001b} \\
\ nabla \ boldsymbol {\ cdot} \ mathbf {E} & = \ frac {\ rho} {\ epsilon_ {0}}
\ tag {001c} \\
\ nabla \ boldsymbol {\ cdot} \ mathbf {B} & = 0
\ tag {001d}
\ end {align}
aus den Euler-Lagrange-Gleichungen
\ begin {Gleichung}
\ boxed {\:
\ dfrac {\ partiell} {\ partiell t} \ left (\ dfrac {\ partiell \ mathcal {L}} {\ partiell \ dot {\ eta} _ {\ jmath}} \ rechts) + \ nabla \ boldsymbol {\ cdot} \ left [\ dfrac {\ teilweise \ mathcal {L}} {\ teilweise \ links (\ boldsymbol {\ nabla} \ eta _ {\ jmath} \ rechts)} \ rechts] - \ frac {\ teilweise \ mathcal { L}} {\ partielle \ eta _ {\ jmath}} = 0, \ quad \ left (\ jmath = 1,2,3,4 \ right)
\:}
\ tag {002}
\ end {Gleichung}
wo
\ begin {Gleichung}
\ mathcal {L} = \ mathcal {L} \ left (\ eta _ {\ jmath}, \ dot {\ eta} _ {\ jmath}, \ boldsymbol {\ nabla} \ eta _ {\ jmath} \ right) \ qquad \ left (\ jmath = 1,2,3,4 \ right)
\ tag {003}
\ end {Gleichung}
ist die Lagrange-Dichte der Frage (außer einem konstanten Faktor)
\ begin {Gleichung}
\ boxed {\:
\ mathcal {L} = \ dfrac {\ Vert \ mathbf {E} \ Vert ^ {2} -c ^ {2} \ Vert \ mathbf {B} \ Vert ^ {2}} {2} + \ dfrac {1 } {\ epsilon_ {0}} \ left (- \ rho \ phi + \ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A} \ right)
\:}
\ tag {004}
\ end {Gleichung}
und $ \: \ eta _ {\ jmath} \ left (x_ {1}, x_ {2}, x_ {3}, t \ right), \: \: \ jmath = 1,2,3,4 \: $ die Komponenten $ \: A_ {1}, \: A_ {2}, \: A_ {3}, \ phi \: $ des EM-Potential-4-Vektors.
In gewissem Sinne baut diese Ableitung auf der Umkehrung auf (dies ist das Finden einer richtigen Lagrange-Dichte aus Maxwell-Gleichungen), indem man sich rückwärts bewegt. Siehe meine Antwort hier: Deriving Lagrange-Dichte für elektromagnetisches Feld
sup>
1. Hauptabschnitt
Zuerst drücken wir $ \: \ mathbf {E}, \ mathbf {B} \: $ von (004) als potenzielle 4-Vektor-Komponenten $ \: A_ {1}, \: A_ {2} aus , \: A_ {3}, \ phi \: $
\ begin {align}
\ mathbf {B} & = \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A}
\ tag {005a} \\
\ mathbf {E} & = - \ boldsymbol {\ nabla} \ phi - \ dfrac {\ partiell \ mathbf {A}} {\ partiell t} = - \ boldsymbol {\ nabla} \ phi - \ mathbf {\ dot { EIN}}
\ tag {005b}
\ end {align}
Ab (005) sind die Maxwell-Gleichungen (001a) und (001d) automatisch gültig. Daher müssen die vier (4) skalaren Maxwell-Gleichungen (001b) und (001c) aus den vier (4) skalaren Euler-Lagrange-Gleichungen (002) abgeleitet werden. Darüber hinaus ist anzunehmen, dass die Vektorgleichung (001b) aus (002) in Bezug auf die Komponenten des Vektorpotentials $ \: \ mathbf {A} = \ left (A_ {1}, \: A_ {) abgeleitet werden muss 2}, \: A_ {3} \ right) \: $, während die Skalargleichung (001c) aus (002) in Bezug auf das Skalarpotential $ \: \ phi \: $ abgeleitet werden muss.
Aus den Gleichungen (005) drücken wir die Lagrange-Dichte (004) als mögliche 4-Vektor-Komponenten $ \: A_ {1}, \: A_ {2}, \: A_ {3}, \ phi \ aus : $:
\ begin {align}
\ left \ Vert \ mathbf {E} \ right \ Vert ^ {2} & = \ left \ Vert - \ boldsymbol {\ nabla} \ phi - \ dfrac {\ partielle \ mathbf {A}} {\ partielle t} \ rechts \ Vert ^ {2} = \ links \ Vert \ mathbf {\ Punkt {A}} \ rechts \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} +2 \ links (\ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} \ right)
\ tag {006a} \\
&
\keine Nummer\\
\ left \ Vert \ mathbf {B} \ right \ Vert ^ {2} & = \ left \ Vert \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2} \ equiv \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ dfrac {\ teilweise \ mathbf {A. }} {\ partielle x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right]
\ tag {006b}
\ end {align}
Die zweite Gleichung in (006b) ist die Identität
\ begin {Gleichung}
\ left \ Vert \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2} \ equiv \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ dfrac {\ partiell \ mathbf {A}} {\ partiell x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol { \ nabla} \ mathrm {A} _ {k} \ right]
\ tag {Id-01}
\ end {Gleichung}
ist in 2 bewiesen. Identities Section.
Durch Einfügen von Ausdrücken (006) in (004) beträgt die Lagrange-Dichte
\ begin {Gleichung}
\ mathcal {L} = \ underbrace {\ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} + \ tfrac {1} {2} \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} + \ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}}} _ {\ tfrac {1} {2} \ left \ Vert - \ boldsymbol {\ nabla} \ phi - \ frac {\ partiell \ mathbf {A}} {\ partiell t} \ rechts \ Vert ^ {2}} - \ tfrac {1} {2} c ^ {2 } \ underbrace {\ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ frac {\ partiell \ mathbf {A}} {\ partielle x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ rechts]} _ {\ left \ Vert \ boldsymbol {\ nabla } \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2}} + \ frac {1} {\ epsilon_ {0}} \ left (- \ rho \ phi + \ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A} \ right)
\ tag {007}
\ end {Gleichung}
sup>
Wir ordnen die Elemente in (007) wie folgt neu an:
\ begin {align}
\ mathcal {L} & = \ overbrace {\ tfrac {1} {2} \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} - \ frac {\ rho \ phi} {\ epsilon_ {0}} + \ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}}} ^ {\ mathcal {L} _ {\ phi} = \ text {in Bezug auf} \ phi} + \ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} + \ tfrac {1} {2} c ^ {2} \ sum ^ {k = 3} _ {k = 1} \ left [\ frac {\ partielle \ mathbf {A}} {\ partielle x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] + \ frac {\ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A}} {\ epsilon_ {0}}
\ tag {008a} \\
\ mathcal {L} & = \ tfrac {1} {2} \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} - \ frac {\ rho \ phi} {\ epsilon_ {0}} + \ underbrace {\ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} + \ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} + \ tfrac {1} {2} c ^ {2} \ sum ^ {k = 3} _ {k = 1} \ left [\ frac {\ partielle \ mathbf {A}} {\ partielle x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ rechts] + \ frac {\ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A}} {\ epsilon_ {0}}} _ {\ mathcal {L} _ {\ mathbf {A}} = \ text { in Bezug auf} \ mathbf {A}}
\ tag {008b}
\ end {align}
sup>
Der $ \: \ mathcal {L} _ {\ phi} \: $ -Teil der Dichte enthält alle $ \: \ phi $ -Terms und wird vernünftigerweise alleine an der Ableitung der Maxwell-Gleichung (001c) von teilnehmen die Euler-Lagrange-Gleichung (002) in Bezug auf $ \: \ eta_ {4} = \ phi \: $. Der Teil $ \: \ mathcal {L} _ {\ mathbf {A}} \: $ der Dichte enthält alle $ \: \ mathbf {A} $ - Terme und wird vernünftigerweise allein an der Ableitung der Maxwell-Gleichung teilnehmen ( 001b) aus den Euler-Lagrange-Gleichungen (002) in Bezug auf $ \: \ eta_ {1}, \ eta_ {2}, \ eta_ {3} = A_ {1}, A_ {1}, A_ {3} \ : $. Beachten Sie den allgemeinen Begriff $ \: \ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} \: $ der Teile $ \: \ mathcal {L} _ {\ phi}, \ mathcal {L} _ {\ mathbf {A}} \: $.
Die Euler-Lagrange-Gleichung in Bezug auf $ \: \ eta_ {4} = \ phi \: $ lautet:
\ begin {Gleichung}
\ dfrac {\ partiell} {\ partiell t} \ overbrace {\ left (\ dfrac {\ partiell \ mathcal {L}} {\ partiell \ dot {\ phi}} \ rechts)} ^ {0} + \ nabla \ Boldsymbol {\ cdot} \ overbrace {\ left [\ dfrac {\ partiell \ mathcal {L}} {\ partiell \ links (\ boldsymbol {\ nabla} \ phi \ rechts)} \ rechts]} ^ {\ boldsymbol {\ nabla} \ phi + \ mathbf {\ dot {A}}} - \ overbrace {\ frac {\ partielle \ mathcal {L}} {\ partielle \ phi}} ^ {- \ frac {\ rho} {\ epsilon_ {0 }}} = 0
\ tag {009}
\ end {Gleichung}
oder
\ begin {Gleichung}
\ nabla \ boldsymbol {\ cdot} \ underbrace {\ left (- \ boldsymbol {\ nabla} \ phi - \ frac {\ partielle \ mathbf {A}} {\ partielle t} \ rechts)} _ {\ mathbf {E. }} = \ frac {\ rho} {\ epsilon_ {0}}
\ tag {010}
\ end {Gleichung}
das ist die Maxwell-Gleichung (001c)
\ begin {Gleichung}
\ nabla \ boldsymbol {\ cdot} \ mathbf {E} = \ frac {\ rho} {\ epsilon_ {0}}
\ tag {001c}
\ end {Gleichung}
Um die Maxwell-Gleichung (001b) abzuleiten, drücken wir sie mit Hilfe der Gleichungen (005) in Form der möglichen 4-Vektor-Komponenten $ \: A_ {1}, \: A_ {2}, \: A_ aus. {3}, \ phi \: $:
\ begin {Gleichung}
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ left (\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right) = \ mu_ {0} \ mathbf {j} + \ frac { 1} {c ^ {2}} \ frac {\ partiell} {\ partiell t} \ left (- \ boldsymbol {\ nabla} \ phi - \ frac {\ partiell \ mathbf {A}} {\ partiell t} \ Recht)
\ tag {011}
\ end {Gleichung}
Die Identität benutzen
\ begin {Gleichung}
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ left (\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right) = \ boldsymbol {\ nabla} \ left (\ nabla \ boldsymbol { \ cdot} \ mathbf {A} \ right) - \ nabla ^ {2} \ mathbf {A}
\ tag {012}
\ end {Gleichung}
Gleichung (011) ergibt
\ begin {Gleichung}
\ frac {1} {c ^ {2}} \ frac {\ partiell ^ {2} \ mathbf {A}} {\ partiell t ^ {2}} - \ nabla ^ {2} \ mathbf {A} + \ Boldsymbol {\ nabla} \ left (\ nabla \ boldsymbol {\ cdot} \ mathbf {A} + \ frac {1} {c ^ {2}} \ frac {\ partiell \ phi} {\ partiell t} \ rechts) = \ mu_ {0} \ mathbf {j}
\ tag {013}
\ end {Gleichung}
Die $ \: k $ -Komponente von Gleichung (013) wird richtig ausgedrückt, um wie eine Euler-Lagrange-Gleichung wie folgt auszusehen:
\ begin {Gleichung}
\ dfrac {\ partiell} {\ partiell t} \ links (\ frac {\ partiell \ mathrm {A} _ {k}} {\ partiell t} + \ frac {\ partiell \ phi} {\ partiell x_ {k} } \ rechts) + \ nabla \ boldsymbol {\ cdot} \ left [c ^ {2} \ left (\ frac {\ partielle \ mathbf {A}} {\ partielle x_ {k}} - \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right) \ right] - \ frac {\ mathrm {j} _ {k}} {\ epsilon_ {0}} = 0
\ tag {014}
\ end {Gleichung}
Es reicht aus, über Gl. (014) aus der Euler-Lagrange-Gleichung (002) in Bezug auf $ \: \ eta_ {k} = A_ {k}, \: \: k = 1,2,3 \: $:
\ begin {Gleichung}
\ dfrac {\ partiell} {\ partiell t} \ links (\ dfrac {\ partiell \ mathcal {L}} {\ partiell \ Punkt {A} _ {k}} \ rechts) + \ nabla \ boldsymbol {\ cdot} \ left [\ dfrac {\ partiell \ mathcal {L}} {\ partiell \ links (\ boldsymbol {\ nabla} A_ {k} \ rechts)} \ rechts] - \ frac {\ partiell \ mathcal {L}} { \ partielle A_ {k}} = 0
\ tag {015}
\ end {Gleichung}
Jetzt
\ begin {Gleichung}
\ dfrac {\ partiell \ mathcal {L}} {\ partiell \ Punkt {A} _ {k}} = \ dfrac {\ partiell} {\ partiell \ Punkt {A} _ {k}} \ left (\ boldsymbol { \ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} + \ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} \ right) = \ frac {\ partiell \ phi} {\ partiell x_ {k}} + \ frac {\ partiell \ mathrm {A} _ {k}} {\ partiell t}
\ tag {016a}
\ end {Gleichung}
\ begin {Gleichung}
\ frac {\ partiell \ mathcal {L}} {\ partiell A_ {k}} = \ frac {\ partiell} {\ partiell A_ {k}} \ left (\ frac {\ mathbf {j} \ boldsymbol {\ cdot } \ mathbf {A}} {\ epsilon_ {0}} \ right) = \ frac {\ mathrm {j} _ {k}} {\ epsilon_ {0}}
\ tag {016b}
\ end {Gleichung}
und
\ begin {Gleichung}
\ dfrac {\ partiell \ mathcal {L}} {\ partiell \ links (\ boldsymbol {\ nabla} A_ {k} \ rechts)} = \ dfrac {\ partiell} {\ partiell \ links (\ boldsymbol {\ nabla} A_ {k} \ rechts)} \ links (\ tfrac {1} {2} c ^ {2} \ sum ^ {k = 3} _ {k = 1} \ links [\ frac {\ partiell \ mathbf {A. }} {\ partielle x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] \ right) = c ^ {2} \ left (\ frac {\ partielle \ mathbf {A}} {\ partielle x_ {k}} - \ boldsymbol {\ nabla} \ mathrm {A. } _ {k} \ right)
\ tag {016c}
\ end {Gleichung}
Die letzte Gleichung in (016c) ist aufgrund der in 2 nachgewiesenen Identität (Id-02) gültig. Identities Section:
\ begin {Gleichung}
\ dfrac {\ partiell \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} { \ partiell \ links (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ rechts)} = \ dfrac {\ partiell} {\ partiell \ links (\ boldsymbol {\ nabla} \ mathrm {A} _ { k} \ rechts)} \ links (\ sum ^ {k = 3} _ {k = 1} \ links [\ frac {\ partiell \ mathbf {A}} {\ partiell x_ {k}} \ boldsymbol {\ cdot } \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] \ right) = 2 \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ frac {\ partielle \ mathbf {A}} {\ partielle x_ {k}} \ rechts)
\ tag {Id-02}
\ end {Gleichung}
Unter Verwendung der Ausdrücke der Gleichungen (016) ergibt die Euler-Lagrange-Gleichung (015) (014) und damit die Maxwell-Gleichung (001b).
2. Identities Section
Wenn $ \: \ mathbf {A} = \ left (\ mathrm {A} _ {1}, \ mathrm {A} _ {2}, \ mathrm {A} _ {3} \ right) \: $ ist a Vektorfunktion der kartesischen Koordinaten $ \: \ left (x_ {1}, x_ {2}, x_ {3} \ right) \: $ then
\ begin {Gleichung}
\ left \ Vert \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2} \ equiv \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ dfrac {\ partiell \ mathbf {A}} {\ partiell x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol { \ nabla} \ mathrm {A} _ {k} \ right]
\ tag {Id-01}
\ end {Gleichung}
und
\ begin {Gleichung}
\ dfrac {\ partiell \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} { \ partiell \ links (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ rechts)} = \ dfrac {\ partiell} {\ partiell \ links (\ boldsymbol {\ nabla} \ mathrm {A} _ { k} \ rechts)} \ links (\ sum ^ {k = 3} _ {k = 1} \ links [\ frac {\ partiell \ mathbf {A}} {\ partiell x_ {k}} \ boldsymbol {\ cdot } \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] \ right) = 2 \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ frac {\ partielle \ mathbf {A}} {\ partielle x_ {k}} \ rechts)
\ tag {Id-02}
\ end {Gleichung}
wobei die funktionale Ableitung der linken Seite definiert ist als
\ begin {Gleichung}
\ dfrac {\ partiell \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} { \ partiell \ links (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ rechts)} \ equiv \ left [\ dfrac {\ partiell \ links (\ left | \! \ left | \ boldsymbol {\ nabla } \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} {\ partiell \ links (\ dfrac {\ partiell \ mathrm {A} _ {k}} { \ partielle x_ {1}} \ rechts)}, \ dfrac {\ partielle \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} {\ partiell \ links (\ dfrac {\ partiell \ mathrm {A} _ {k}} {\ partiell x_ {2}} \ rechts)}, \ dfrac {\ partiell \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} {\ partiell \ left ( \ dfrac {\ partielle \ mathrm {A} _ {k}} {\ partielle x_ {3}} \ rechts)} \ rechts]
\ tag {Id-03}
\ end {Gleichung}
Beweis der Gleichung (Id-01):
\ begin {eqnarray *}
&& \ left | \! \ Left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} = \ left (\ frac {\ partielle A_ {3}} {\ partielle x_ {2} } - \ frac {\ partielle A_ {2}} {\ partielle x_ {3}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {1}} {\ partielle x_ {3}} - \ frac {\ partielle A_ {3}} {\ partielle x_ {1}} \ rechts) ^ {2} + \ links (\ frac {\ partielle A_ {2}} {\ partielle x_ {1}} - \ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ rechts) ^ {2} \\
% ----------------------------------------
& = & \ left [\ left (\ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {1}} {\ partiell x_ {3}} \ rechts) ^ {2} \ rechts] + \ links [\ links (\ frac {\ partiell A_ {2}} {\ partiell x_ {1}} \ rechts) ^ {2} + \ links (\ frac {\ partiell A_ {2}} {\ partiell x_ {3}} \ rechts) ^ {2} \ rechts] + \ links [\ links (\ frac {\ partiell A_ {3}} {\ partiell x_ {1}} \ rechts) ^ {2} + \ links (\ frac {\ partiell A_ {3}} {\ partiell x_ {2}} \ rechts) ^ {2} \ rechts] \\
% ----------------------------------------
&&-2 \ left [\ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ frac {\ partielle A_ {2}} {\ partielle x_ {1}} + \ frac {\ partielle A_ { 2}} {\ partielle x_ {3}} \ frac {\ partielle A_ {3}} {\ partielle x_ {2}} + \ frac {\ partielle A_ {3}} {\ partielle x_ {1}} \ frac {\ partielle A_ {1}} {\ partielle x_ {3}} \ rechts] \\
% ----------------------------------------
& = & \ left [\ left (\ frac {\ partielle A_ {1}} {\ partielle x_ {1}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {1}} {\ partiell x_ {2}} \ rechts) ^ {2} + \ links (\ frac {\ partiell A_ {1}} {\ partiell x_ {3}} \ rechts) ^ {2} \ rechts] + \ links [\ links (\ frac {\ partiell A_ {2}} {\ partiell x_ {1}} \ rechts) ^ {2} + \ links (\ frac {\ partiell A_ {2}} {\ partiell x_ {2}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {2}} {\ partielle x_ {3}} \ rechts) ^ {2} \ rechts] \\
% ----------------------------------------
&& + \ left [\ left (\ frac {\ partielle A_ {3}} {\ partielle x_ {1}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {3}} {\ partielle x_ {2}} \ rechts) ^ {2} + \ links (\ frac {\ partiell A_ {3}} {\ partiell x_ {3}} \ rechts) ^ {2} \ rechts] - \ links [\ links ( \ frac {\ partielle A_ {1}} {\ partielle x_ {1}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {2}} {\ partielle x_ {2}} \ rechts) ^ {2} + \ left (\ frac {\ partiell A_ {3}} {\ partiell x_ {3}} \ rechts) ^ {2} \ rechts] \\
% ----------------------------------------
&&-2 \ left [\ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ frac {\ partielle A_ {2}} {\ partielle x_ {1}} + \ frac {\ partielle A_ { 2}} {\ partielle x_ {3}} \ frac {\ partielle A_ {3}} {\ partielle x_ {2}} + \ frac {\ partielle A_ {3}} {\ partielle x_ {1}} \ frac {\ partielle A_ {1}} {\ partielle x_ {3}} \ rechts] \\
% ----------------------------------------
& = & \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {1} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {2} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {3} \ Vert ^ {2} - \ left (\ frac {\ partielle A_ {1}} {\ partielle x_ {1}} \ frac {\ partielles A_ {1}} {\ partielles x_ {1}} + \ frac {\ partielles A_ {2}} {\ partielles x_ {1}} \ frac {\ partielles A_ {1}} {\ partielles x_ {2} } + \ frac {\ partielle A_ {3}} {\ partielle x_ {1}} \ frac {\ partielle A_ {1}} {\ partielle x_ {3}} \ rechts) \\
% ----------------------------------------
&&- \ left (\ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ frac {\ partielle A_ {2}} {\ partielle x_ {1}} + \ frac {\ partielle A_ {2 }} {\ partielle x_ {2}} \ frac {\ partielle A_ {2}} {\ partielle x_ {2}} + \ frac {\ partielle A_ {3}} {\ partielle x_ {2}} \ frac { \ partielle A_ {2}} {\ partielle x_ {3}} \ rechts) - \ links (\ frac {\ partielle A_ {1}} {\ partielle x_ {3}} \ frac {\ partielle A_ {3}} {\ partielle x_ {1}} + \ frac {\ partielle A_ {2}} {\ partielle x_ {3}} \ frac {\ partielle A_ {3}} {\ partielle x_ {2}} + \ frac {\ partielles A_ {3}} {\ partielles x_ {3}} \ frac {\ partielles A_ {3}} {\ partielles x_ {3}} \ rechts) \\
% ----------------------------------------
& = & \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {1} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {2} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {3} \ Vert ^ {2} - \ frac {\ partiell \ mathbf {A}} {\ partiell x_ {1}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {1} - \ frac {\ partiell \ mathbf {A}} {\ partiell x_ {2}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm { A} _ {2} - \ frac {\ teilweise \ mathbf {A}} {\ teilweise x_ {3}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {3} \\
% ----------------------------------------
& = & \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ frac {\ partiell \ mathbf {A}} {\ partielle x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right]
\ end {eqnarray *}
Beweis der Gleichung (Id-02):
Aus der Gleichung
\ begin {eqnarray *}
&& \ left | \! \ Left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} = \ left (\ frac {\ partielle A_ {3}} {\ partielle x_ {2} } - \ frac {\ partielle A_ {2}} {\ partielle x_ {3}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {1}} {\ partielle x_ {3}} - \ frac {\ partielle A_ {3}} {\ partielle x_ {1}} \ rechts) ^ {2} + \ links (\ frac {\ partielle A_ {2}} {\ partielle x_ {1}} - \ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ rechts) ^ {2} \\
% ----------------------------------------
& = & \ left [\ left (\ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ rechts) ^ {2} + \ left (\ frac {\ partielle A_ {1}} {\ partiell x_ {3}} \ rechts) ^ {2} \ rechts] + \ links [\ links (\ frac {\ partiell A_ {2}} {\ partiell x_ {1}} \ rechts) ^ {2} + \ links (\ frac {\ partiell A_ {2}} {\ partiell x_ {3}} \ rechts) ^ {2} \ rechts] + \ links [\ links (\ frac {\ partiell A_ {3}} {\ partiell x_ {1}} \ rechts) ^ {2} + \ links (\ frac {\ partiell A_ {3}} {\ partiell x_ {2}} \ rechts) ^ {2} \ rechts] \\
% ----------------------------------------
&&-2 \ left [\ frac {\ partielle A_ {1}} {\ partielle x_ {2}} \ frac {\ partielle A_ {2}} {\ partielle x_ {1}} + \ frac {\ partielle A_ { 2}} {\ partielle x_ {3}} \ frac {\ partielle A_ {3}} {\ partielle x_ {2}} + \ frac {\ partielle A_ {3}} {\ partielle x_ {1}} \ frac {\ partielle A_ {1}} {\ partielle x_ {3}} \ rechts]
\ end {eqnarray *}
wir haben
\ begin {eqnarray *}
\ dfrac {\ partiell \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} { \ partiell \ links (\ dfrac {\ partiell \ mathrm {A} _ {1}} {\ partiell x_ {1}} \ rechts)} & = & 0 = 2 \ links (\ dfrac {\ partiell \ mathrm {A. } _ {1}} {\ partielle x_ {1}} - \ dfrac {\ partielle \ mathrm {A} _ {1}} {\ partielle x_ {1}} \ rechts) \\
\ dfrac {\ partiell \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} { \ partiell \ links (\ dfrac {\ partiell \ mathrm {A} _ {1}} {\ partiell x_ {2}} \ rechts)} & = & 2 \ links (\ dfrac {\ partiell \ mathrm {A} _ {1}} {\ partielle x_ {2}} - \ dfrac {\ partielle \ mathrm {A} _ {2}} {\ partielle x_ {1}} \ rechts) \\
\ dfrac {\ partiell \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} { \ partiell \ links (\ dfrac {\ partiell \ mathrm {A} _ {1}} {\ partiell x_ {3}} \ rechts)} & = & 2 \ links (\ dfrac {\ partiell \ mathrm {A} _ {1}} {\ partielle x_ {3}} - \ dfrac {\ partielle \ mathrm {A} _ {3}} {\ partielle x_ {1}} \ rechts)
\ end {eqnarray *}
Damit
\ begin {Gleichung *}
\ dfrac {\ partiell \ links (\ links | \! \ links | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ rechts | \! \ rechts | ^ {2} \ rechts)} {\ partiell \ links (\ boldsymbol {\ nabla} \ mathrm {A} _ {1} \ rechts)} = 2 \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {1} - \ frac {\ partiell\ mathbf {A}} {\ teilweise x_ {1}} \ rechts)
\ end {Gleichung *}
Beweisgleichung (Id-02) für $ \: k = 1 \: $ und ähnlich für die beiden anderen Komponenten $ \: k = 2,3 $.
sup>